近红外光谱奇异样本剔除方法研究
作者:
作者单位:

(北京工商大学 计算机与信息工程学院, 北京 100048)

作者简介:

刘翠玲,女,教授,博士,主要从事检测技术及智能信息处理方面的研究.

通讯作者:

中图分类号:

基金项目:

北京市科技创新平台资助项目(pxm_2012_014213_000023); 北京市教委科技发展重点资助项目(KZ201310011012); 北京市优秀人才基金资助项目(2012D005003000007). 


Outlier Sample Eliminating Methods for Building Calibration Model of Near Infrared Spectroscopy Analysis
Author:
Affiliation:

(School of Computer Science and Information Engineering, Beijing Technology and Business University, Beijing 100048, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用近红外光谱分析技术建立面粉校正模型,对面粉中灰分含量进行定量分析,并对异常样本进行剔除. 试验中采用马氏距离法和蒙特卡洛采样法分别对异常样本进行了剔除,结果表明:用马氏距离法剔除异常样本,当权重系数为1.5,剔除样本数为3时,得到最好结果,相关系数(R2)为92.67,交互验证均方差 RMSECV为0.0485; MCCV法剔除异常样本,剔除样本数为3,得到最好结果,相关系数(R2)为94.64,交互验证均方差RMSECV为0.0411. 故马氏距离法剔除异常样本能在一定程度上提高校正模型的精度和预测精度,但MCCV法剔除异常样本后模型精度和预测精度优于马氏距离法.

    Abstract:

    The accuracy of the prediction model is affected by the near-infrared spectrum of flour and flour ash contents was quantitative analyzed. While the presence of outlier data seriously interfere with the reliability of the model, therefore, it is essential to identify and deal with the outlier samples to improve the predictive ability. Mahalanobis distance and the Monte Carlo cross validation (MCCV) methods were used to remove the outlier samples. When the weight coefficient was 1.5, excluding sample number was 3 with the former method it could get the best results, and the related coefficient (R2) was 92.67, cross-validation mean square error (RMSECV) was 0.0485. While with the latter method the correlation coefficient (R2) was 94.64, cross-validation mean square error (RMSECV) was 0.0411.Therefore, Mahalanobis distance method can improve the calibration model and prediction accuracy to a certain extent, while the calibration model and prediction accuracy of MCCV without outliers samples was better than that of the Mahalanobis distance method.

    参考文献
    相似文献
    引证文献
引用本文

刘翠玲,胡玉君,吴胜男,孙晓荣,窦森磊,苗雨晴,窦 颖.近红外光谱奇异样本剔除方法研究[J].食品科学技术学报,2014,32(5):74-79.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-11-06
  • 出版日期: